667/Chem. 22-23 / 61411

## B.Sc. Semester-VI Examination, 2022-23 CHEMISTRY [Honours]

Course ID: 61411 Course Code: SH/CHEM/601/C-13
Course Title: Inorganic Chemistry V

Time: 1 Hour 15 Minutes Full Marks: 25

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any **five** questions:  $1 \times 5 = 5$ 
  - a) Mention the name of the metal ion with oxidation state present in hemocyanin.
  - b) Write down one reductive elimination reaction.
  - c) Differentiate kinetic and thermodynamic stability of products.
  - d) Draw the structure of the complex formed between Lewisite and British Anti Lewisite (BAL).
  - e) Using EAN rule find the simplest formula of a mononuclear carbonyl of chromium.
  - f) Write down the structure of the product formed between binuclear carbonyl of cobalt and nitrosyl.

[Turn Over]

- g) What is Bohr effect?
- h) What is the cause of Wilsons' disease?
- 2. Answer any **two** questions:
  - What is hapticity of a ligand? Explain the hapticity of a Cp (cyclopentadienyl ion) in  $[W(Cp)_2(CO)_2]$ . Find the value of 'x' in  $[Fe_2(CO)_xH]^-$ . 1+2+2=5
  - b) Discus the core structure and oxidation states of the metal ions of hemerythrin and oxyhemerithrin. State the mechanism of the biological function of carbonic anhydrase.

3+2=5

 $5 \times 2 = 10$ 

- c) i) What is trans effect? Compare with justification the trans effect of Cl, B and NH<sub>2</sub>.
  - Explain with example, hydroformylation reaction. (1+2)+2=5
- d) i) Show that each iron in  $Fe_2(CO)_9$  conforms to the 18-e rule.
  - ii) Cite one nonheme electron transfer protein and indicate the change of oxidation state during electron transfer process.

    3+2=5

- 3. Answer any **one** question:  $10 \times 1 = 10$ 
  - a) i) Discuss the important role of Mg<sup>2+</sup> in photosynthesis.
    - ii) Write down the reaction involve during nitrogen fixation process and show schematically the mechanism of the process.
    - iii) What is Ziegler-Natta Catalyst? What are the products form when ethylene and propylene are separately subjected to Ziegler-Natta Catalyst?
    - iv) How cis-platin is synthesized?

b) i) Rationalize the IR frequencies (cm<sup>-1</sup>) of the following:

| Compound            | Frequencies (cm <sup>-1</sup> ) |
|---------------------|---------------------------------|
| СО                  | 2143                            |
| Cr(CO) <sub>6</sub> | 2100                            |
| V(CO) <sub>6</sub>  | 1860                            |

- ii) Complete the following reactions:
  - A)  $\left[\operatorname{Mn}_{2}\left(\operatorname{CO}\right)_{10}\right] + \operatorname{Br}_{2} \rightarrow \underline{\hspace{1cm}}$
  - B)  $\left[ \text{Fe(CO)}_{5} \right] + \underline{\qquad} \text{NO} \rightarrow \underline{\qquad}$

- iii) Explain with example with the help of M.O. Theory, why 18-electron metal carbonyls are stable.
- iv) Explain why, square planar complex undergoes ligand substitution reactions via associative mechanism. 3+2+3+2=10